目濡耳染网

尾盘异动!这些板块掀涨停潮!A股后市怎么走?

尾盘异动!这些板块掀涨停潮!A股后市怎么走?

  盘面上,供销社、种业、生物质能、免税概念等板块涨幅居前,Sora概念、互联网、通信设备、人形机器人等板块跌幅居前。

  Wind实时监测数据显示,机械设备行业获得逾50亿元主力资金净流入,商贸零售、房地产均获得超20亿元净流入,计算机、纺织服饰、交通运输等获得超10亿元净流入。家用电器行业主力资金净流出逾12亿元,国防军工、汽车、传媒也净流出超亿元。

  展望后市,平安证券指出,中美关系反复可能对A股有短期阶段性扰动,但外部风险已在我国政策制定的考虑范围内,长期建议更多聚焦“以我为主”,关注制造成长+消费修复。

  一方面,从长期产业转型看,我国在引导各类资源向新质生产力集聚,今年以来证监会已先后发布“科创十六条”“科创板八条”“并购六条”等政策支持科技创新培育,长期建议关注以新质生产力和先进制造业为代表的成长风格、资本市场并购重组及国企改革相关的主题机会;

  另一方面,外部扰动下,国内有望加码更多内需刺激政策,待政策效果显现及估值持续消化后,内需消费板块的投资机会也有望增加。

  浦银国际表示,短期来看,中国市场仍主要受政策面的驱动,后续如果有显著的增量利好政策出台,有望推动市场情绪得到进一步修复。在更多的政策刺激出台前,预计中国市场或更多呈现结构性行情,可能更多是行业和个股的机会。

  市场热点方面,农业股今日再度全线走强,种业概念领涨,板块指数放量大涨4.24%。板块内所有个股逆势飘红,绿亨科技创历史新高,康农种业、神农种业、荃银高科等涨幅居前。

  粮食概念、预制菜、水产品、虫害防治等细分板块也全线逆势走强,天禾股份、黑芝麻、佳禾食品、桂发祥等涨停。

  消息面,日前经青岛市人大常委会审议通过、山东省人大常委会批准《青岛市种业促进条例》(以下简称《条例》)正式发布,这是国内首部全面统筹农作物、畜禽、水产、林草、农业微生物等领域种业发展的促进条例,为加快培育农业新质生产力提供坚实的法治保障。《条例》将于2025年1月1日起施行。

  《条例》重点从提高育种技术攻关能力、加强自主知识产权品种培育等方面进行了规定。鼓励开展种质资源保护利用科学技术研究,鼓励从境外引进优异种质资源。设立种业科研项目,重点扶持本地优势特色品种选育,对育种周期长以及具有重大经济或者社会价值的项目予以长期稳定支持。

  中信证券认为,特朗普胜选,参考历史经验,关税反制预期渐起,或抬升农产品进口成本,拉动种植产业链景气度回暖。种子作为“农业芯片”或将进一步获得强政策支持而实现跃进式发展。粮食安全重要性凸显,降低对美进口依赖度将倒逼国内粮食生产加速实现“国产替代”。外部催化明确,建议加大布局种植产业链。

  今日,微盘股、低价股、ST股均逆势走强,个股掀起涨停潮。微盘股指数放量逆势创出历史新高,建科院、龙利得20%涨停,天鹅股份、龙韵股份、同兴环保、楚环科技等强势涨停。

  低价股指数和ST板块指数也均逆势涨超1%,供销大集、广田集团、ST百利(维权)、*ST通脉(维权)等批量涨停。

" alt="尾盘异动!这些板块掀涨停潮!A股后市怎么走?" title="尾盘异动!这些板块掀涨停潮!A股后市怎么走?">

尾盘异动!这些板块掀涨停潮!A股后市怎么走?

准确到几点几分下雨的天气预报 38193 广西旅游必去十大景点排名

梅州首批钢企安全生产特派员驻厂上岗!

梅州首批钢企安全生产特派员驻厂上岗!

同城58招工招聘信息 8194 香格里拉

中国农产品交易发布中期业绩 股东应占溢利1028.1万港元同比增长28.6%

  中国农产品交易(00149)发布截至2024年9月30日止六个月业绩,收益3.03亿港元,同比下降6.7%;母公司拥有人应占溢利1028.1万港元,同比增长28.6%;每股基本盈利0.10港仙。

  期内收益减少,乃由于物业销售的确认较2023年对应期间减少。

" alt="中国农产品交易发布中期业绩 股东应占溢利1028.1万港元同比增长28.6%" title="中国农产品交易发布中期业绩 股东应占溢利1028.1万港元同比增长28.6%">
反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  使用这种方法,推理成本没有明显提升,但是模型性能更好了。

  这么好用的模型,为啥不发布?

  不划算。

  semianalysis分析,相较于直接发布,Anthropic更倾向于用最好的模型来做内部训练,发布Claude 3.5 Sonnet就够了。

  这多少让人不敢相信。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  但是文章作者之一Dylan Patel也曾是最早揭秘GPT-4架构的人。

  除此之外,文章还分析了最新发布的o1 Pro、神秘Orion的架构以及这些先进模型中蕴藏的新规律。

  比如它还指出,搜索是Scaling的另一维度,o1没有利用这个维度,但是o1 Pro用了。

  网友:它暗示了o1和o1 Pro之间的区别,这也是之前没有被披露过的。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  新旧范式交迭,大模型还在加速

  总体来看,semianalysis的最新文章分析了当前大模型开发在算力、数据、算法上面临的挑战与现状。

  核心观点简单粗暴总结,就是新范式还在不断涌现,AI进程没有减速。

  文章开篇即点明,Scaling law依旧有效。

  尽管有诸多声音认为,随着新模型在基准测试上的提升不够明显,现有训练数据几乎用尽以及摩尔定律放缓,大模型的Scaling Law要失效了。

  但是顶尖AI实验室、计算公司还在加速建设数据中心,并向底层硬件砸更多钱。

  比如AWS斥巨资自研了Trainium2芯片,花费65亿美元为Anthropic准备40万块芯片。

  Meta也计划在2026年建成耗电功率200万千瓦的数据中心。

  很明显,最能深刻影响AI进程的人们,依旧相信Scaling Law。

  为什么呢?

  因为新范式在不断形成,并且有效。这使得AI开发还在继续加速。

  首先在底层计算硬件上,摩尔定律的确在放缓,但是英伟达正在引领新的计算定律。

  8年时间,英伟达的AI芯片计算性能已经提升了1000倍。

  同时,通过芯片内部和芯片之间的并行计算,以及构建更大规模的高带宽网络域可以使得芯片更好在网络集群内协同工作,特别是推理方面。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  其次在数据方面也出现了新的范式。

  已有公开数据消耗殆尽后,合成数据提供了新的解决途径。

  比如用GPT-4合成数据训练其他模型是很多实验团队都在使用的技术方案。

  而且模型越好,合成数据质量就越高。

  也就是在这里,Claude 3.5 Opus不发布的内幕被曝光。

  它承担了为Claude 3.5 Sonnet合成训练数据、替代人类反馈的工作。

  事实证明,合成数据越多,模型就越好。更好的模型能提供更好的合成数据,也能提供更好的偏好反馈,这能推动人类开发出更好的模型。

  具体来看,semianalysisi还举了更多使用综合数据的例子。

  包括拒绝采样、模式判断、长上下文数据集几种情况。

  比如Meta将Python代码翻译成PHP,并通过语法解析和执行来确保数据质量,将这些额外的数据输入SFT数据集,解释为何缺少公共PHP代码。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  比如Meta还使用Llama 3作为拒绝采样器,判断伪代码,并给代码进行评级。一些时候,拒绝抽样和模式判断一起使用。这种方式成本更低,不过很难实现完全自动化。

  在所有拒绝抽样方法中,“判官”模型越好,得到数据集的质量就越高。

  这种模式,Meta今年刚刚开始用,而OpenAI、Anthropic已经用了一两年。

  在长上下文方面,人类很难提供高质量的注释,AI处理成为一种更有效的方法。

  然后在RLHF方面,专门收集大量的偏好数据难且贵。

  对于Llama 3,DPO(直接偏好优化)比PPO(最近策略优化)更有效且稳定,使用的计算也少。但是使用DPO就意味着偏好数据集是非常关键的。

  如OpenAI等大型公司想到的一种办法是从用户侧收集,有时ChatGPT会给出2个回答并要求用户选出更喜欢的一个,因此免费收集了很多反馈。

  还有一种新的范式是让AI替人类进行反馈——RLAIF。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  它主要分为两个阶段。第一阶段模型先根据人类编写的标准对自己的输出进行修改,然后创建出一个修订-提示对的数据集,使用这些数据集通过SFT进行微调。

  第二阶段类似于RLHF,但是这一步完全没有人类偏好数据。

  这种方法最值得关注的一点是,它可以在许多不同领域扩展。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  最后,值得重点关注的一个新范式是通过搜索来扩展推理计算。

  文章中表明,搜索是扩展的另一个维度。OpenAI o1没有利用这个维度,但是o1 Pro用了。

  o1在测试时阶段不评估多条推理路径,也不进行任何搜索。

  Self-Consistency / Majority Vote就是一种搜索方法。

  这种方法中,只需在模型中多次运行提示词,产生多个相应,根据给定的样本数量,从相应中选出出现频率最高的来作为正确答案。

反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练

  除此之外,文章还进一步分析了为什么说OpenAI的Orion训练失败也是不准确的。

  本文作者:量子位,来源:量子位,原文标题:《反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练》

  风险提示及免责条款

  市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。

" alt="反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练" title="反转!Claude 3.5超大杯没有训练失败,最新爆料:内部自留,用于合成数据和RL训练">